Extensions 1→N→G→Q→1 with N=C23×D7 and Q=C4

Direct product G=N×Q with N=C23×D7 and Q=C4
dρLabelID
D7×C23×C4224D7xC2^3xC4448,1366

Semidirect products G=N:Q with N=C23×D7 and Q=C4
extensionφ:Q→Out NdρLabelID
(C23×D7)⋊1C4 = C7⋊C2≀C4φ: C4/C1C4 ⊆ Out C23×D7568+(C2^3xD7):1C4448,28
(C23×D7)⋊2C4 = C23.3D28φ: C4/C1C4 ⊆ Out C23×D7568+(C2^3xD7):2C4448,32
(C23×D7)⋊3C4 = D7×C23⋊C4φ: C4/C1C4 ⊆ Out C23×D7568+(C2^3xD7):3C4448,277
(C23×D7)⋊4C4 = C2×C23.1D14φ: C4/C1C4 ⊆ Out C23×D7112(C2^3xD7):4C4448,488
(C23×D7)⋊5C4 = C23.44D28φ: C4/C2C2 ⊆ Out C23×D7112(C2^3xD7):5C4448,489
(C23×D7)⋊6C4 = C2×D7×C22⋊C4φ: C4/C2C2 ⊆ Out C23×D7112(C2^3xD7):6C4448,937
(C23×D7)⋊7C4 = C22×D14⋊C4φ: C4/C2C2 ⊆ Out C23×D7224(C2^3xD7):7C4448,1240

Non-split extensions G=N.Q with N=C23×D7 and Q=C4
extensionφ:Q→Out NdρLabelID
(C23×D7).1C4 = (C22×D7)⋊C8φ: C4/C1C4 ⊆ Out C23×D7112(C2^3xD7).1C4448,25
(C23×D7).2C4 = D7×C4.D4φ: C4/C1C4 ⊆ Out C23×D7568+(C2^3xD7).2C4448,278
(C23×D7).3C4 = C2×C28.46D4φ: C4/C1C4 ⊆ Out C23×D7112(C2^3xD7).3C4448,664
(C23×D7).4C4 = D7×C22⋊C8φ: C4/C2C2 ⊆ Out C23×D7112(C2^3xD7).4C4448,258
(C23×D7).5C4 = D14⋊M4(2)φ: C4/C2C2 ⊆ Out C23×D7112(C2^3xD7).5C4448,260
(C23×D7).6C4 = C2×D14⋊C8φ: C4/C2C2 ⊆ Out C23×D7224(C2^3xD7).6C4448,642
(C23×D7).7C4 = D146M4(2)φ: C4/C2C2 ⊆ Out C23×D7112(C2^3xD7).7C4448,660
(C23×D7).8C4 = C22×C8⋊D7φ: C4/C2C2 ⊆ Out C23×D7224(C2^3xD7).8C4448,1190
(C23×D7).9C4 = C2×D7×M4(2)φ: C4/C2C2 ⊆ Out C23×D7112(C2^3xD7).9C4448,1196
(C23×D7).10C4 = D7×C22×C8φ: trivial image224(C2^3xD7).10C4448,1189

׿
×
𝔽